Choosing a 'correct' mixture model *Power, limitations, and some help from graphics*

Gitta Lubke Jeffrey Spies glubke@nd.edu jspies@nd.edu

University of Notre Dame

Overview

- building factor mixture models
 - possible errors, mispecifications
- potential of FMM's
- power to distinguish between alternative models
 simulation results
- human predisposition to distinguish between trees
 - visualization of high-dimensional data
 - HDTreeV
- implications for different applications of FMM's

Potentially clustered data

Context:

- subgroups within a population
- clustering variable(s) unknown
- number of clusters unknown
- multivariate observed data

Approach:

 build a model for the joint distribution of the observed data

in what follows

- observed variables are denoted as Y
- probability distributions are denoted as $f(\cdot)$
- the number of classes is $k = 1, \ldots, K$
- and π_k is the proportion of class k

$$f(\mathbf{y}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{y})$$

possible error: mispecification of K

A more specific joint distribution

- let ϕ be a vector containing the parameters of the joint distribution
- μ and Σ denote means and covariances

$$f(\mathbf{y}; \boldsymbol{\phi}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{y}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

possible error: non-normality of Y within class (or Y* in case of ordered categorical outcomes)

...and even more specific

• let ν , α , Λ , Ψ , Θ indicate intercepts, factor means, loadings, factor covariance matrix, and error matrix

$$egin{array}{rcl} oldsymbol{\mu}_k &=& oldsymbol{
u}_k + oldsymbol{\Lambda}_k oldsymbol{lpha}_k \ oldsymbol{\Sigma}_k &=& oldsymbol{\Lambda}_k oldsymbol{\Psi}_k oldsymbol{\Lambda}_k^t + oldsymbol{\Theta}_k \end{array}$$

possible errors:

- mispecification of the factor structure within class (number of factors, pattern of loadings, etc.)
- violation of assumptions of the factor model (linear item factor relations, errors and factors uncorrelated, etc.)

Potential of FMM's

- model based approach to clustering
 - measures of goodness-of-fit
- distinguish between sources of covariation (factors vs. classes)
 - extension of latent class analysis
- general framework includes large number of specific submodels
 - conventional factor models, growth models, latent class models,...

...however

- the factor mixture model is a complex model
- not surprisingly many opportunities for mispecifications

summary of potential errors

- mispecification of the number of classes K
- non-normality of Y or Y* within class
- mispecification of the factor structure within class (number of factors, pattern of loadings, etc.)
- other violation of assumptions of the factor model (linear item factor relations, errors and factors uncorrelated, etc.)

Mispecification of *K*

- true situation
- fitted model

Mispecification of *K*

- true situation
- fitted model

- true situation
- fitted model

Power to distinguish between models

Approach: conduct simulation studies

- generating data under different models
 - including latent class models, conventional factor models, and FMM's
- compare the fit of different models
 - use several fit indices

Interpret results:

- which models are difficult to distinguish
- how often is the true model is selected

may depend on the type of application

FMM's can be used to

- address theoretical questions related to categorical vs. continuous latent variables
 - subtypes vs. risk factors of psychiatric disorders
- single out class of 'high risk' individuals
 - differential treatment

Study 1: Ideal circumstances

Collaboration with Mike Neale

- N=200 within class
- class separation 1.5 and 3 (Mahalanobis distance)
- generated data multivariate normal conditional on class
- no violations of within class model assumptions
 - latent profile, conventional factor, 1- and 2-factor
 2-class models
- fitted models: full factorial design
- aim: choose correct model type? Correct model?

General pattern of results

- fitting only latent class models can lead to overextraction of classes if
 - true models have factors
- fitting only factor model can lead to overextraction of factors if
 - true models have classes
- choosing the correct model is unproblematic if
 - a set of different model types is fitted
 - fit indices and parameter estimates are considered jointly

Example: 2c LPM proportion correct choice

	logL-val	AIC	BIC	saBIC	CAIC	aLRT
small class separation						
1^{st} choice	0.06	0.11	0	0.14	0	0.97
2^{nd} choice	0.52	0.34	0.6	0.5	0.33	-
larger class separation						
1^{st} choice	0.06	0.12	0.97	0.77	0.97	1
2^{nd} choice	0.56	0.73	0	0.2	0	-

Example: 2c LPM average results

	logL-value	AIC	BIC	saBIC	aLRT		
	small class separation						
LPMc2	-4484.82	9051.63	9215.28	9085.19	0.01		
LPMc3	-4458.66	9041.32	9288.79	9092.06	0.47		
F1c1	-4496.85	9053.70	9173.45	9078.25	NA		
F1c2	-4452.22	9026.45	9269.93	9076.37	0.60		
larger class separation							
LPMc2	-4599.16	9280.33	9443.98	9313.88	0.00		
LPMc3	-4573.00	9270.00	9517.47	9320.74	0.43		
F1c2	-4577.46	9276.91	9520.39	9326.83	0.06		

- class-specific parameters (loadings, intercepts) increase correct model selection
 - measurement invariant models more problematic
- difference in class proportions
 - here: no substantial effect
 - only 2 classes with proportions .1 and .9
- decreasing sample size
 - necessary within class sample size to achieve > 90%correct model choice for small separation seems to be $N_{wc} = 200$
 - surprisingly good results were obtained with $N_{wc} = 75$ for large separation (> 95% correct model choice)

Summary and design studies 2, 3, and 4

- distinguishing between model type unproblematic
- sample size interacts with class separation
 - detection of very small classes and smaller class differences
- power is part of the problem to choose a correct model
 - in Study 1 there were no violations of model assumptions
- main focus Studies 2, 3, and 4: power and categorical outcomes
- much longer computation times
 - more limited design, only 30 replications

Study 2: 2c LPM proportion correct choice

replication of Study 1, outcomes 5-point Likert instead of normal

	AIC	BIC	saBIC	aLRT
Efa F1	0.7	1	0.967	NA
Efa F2	0.133	0	0.033	NA
Efa F3	0.033	0	0	NA
F1C2NP	0.067	0	0	0.567
LCA 2c	0.067	0	0	0.067

Study 2: 2c LPM average results

	AIC	BIC	saBIC	aLRT
Efa F1	7389.40	7574.59	7416.02	NA
Efa F2	7390.41	7608.93	7421.82	NA
Efa F3	7401.01	7649.17	7436.68	NA
F1C2NP	7396.36	7744.52	7446.40	0.74
LCA 2C	7401.26	7701.26	7444.38	0.52
LCA 3C	7408.78	7860.64	7473.73	0.69

Study 3: 2c LPM proportion correct choice

increase Mahalanobis distance from 1.5 to 2

	AIC	BIC	saBIC	aLRT
Efa F1	0.833	1	0.967	NA
Efa F2	0.067	0	0.033	NA
Efa F3	0.033	0	0	NA
F1C2NP	0.067	0	0	0.3
LCA 2c	0.067	0	0	0.333

Study 3: 2c LPM average results

	AIC	BIC	saBIC	aLRT
Efa F1	7343.09	7528.28	7369.1	NA
Efa F2	7349.37	7567.89	7380.78	NA
Efa F3	7347.67	7595.82	7383.34	NA
F1C2NP	7355.01	7703.17	7405.06	0.75
LCA 2C	7356.18	7656.1	8 7399.30	0.18
LCA 3C	7365.16	7817.0	2 7430.11	0.75

increase within class sample size

- results not yet available due to long computation times and outages on campus
 - our building is being renovated :-)
 - Mplus doesn't run on UNIX clusters :-(
- preliminary results confirm expectation
 - possible to detect smaller class separation
- what needs to be done
 - violations of within class model assumptions
 - some work already done by Bauer

Getting back to the list of problems

- \checkmark mispecification of the number of classes K
- non-normality within class
- mispecification of the factor structure within class
- other violation of assumptions of the factor model

even if more results become available concerning overextraction of classes in case of model violations...

- too many alternative models to fit
- fit indices do not necessarily agree

Getting some help from graphics

ideally, it would be nice to obtain an initial idea concerning the sources of variability

- classes vs. factors
- number of classes
- variability within class

in an exploratory analysis, this information is not available

- visualize data
 - multi-variate item level data are high dimensional
 - individual item distribution do not reveal the needed information

Trees

HDTreeV

developer: Jeffrey Spies

central idea: use the human predisposition to reliably distinguish between different trees fast and without effort

- each subject is represented as a tree
- response pattern is mapped onto branches and angles between branches
 - possible mapping: item 1=stem 1, item 2=first angle, item 3 = first branch,...
 - different mapping: switch order of items
 - in HDTreeV only bifurcations

important: No assumptions concerning underlying structure

used before to illustrate need for starting values, evaluate fit measures. etc.

- 150 flowers collected by Anderson (1935)
- 3 species, 50 observations per species
- four variables
 - sepal length and width
 - petal length and width
- published by Fisher (1936)

Iris data: item distributions

執

Iris data in HDTreeV

ADHD data

data available thanks to Marjo-Riitta Jarvelin, University of Oulu, Oulu, Finland

- 1985-86 Northern Finnish Birth Cohort
- 6622 adolescents
- 18 items
 - 9 inattentiveness
 - 9 hyperactivity/impulsiveness
- paper describing the analysis in preparation/submitted
 - 2 factor 2 class model best fitting model
 - co-authors B. Muthén, I. Moilanen, S. Loo, J. Swanson, M. Yang, T. Hurtig, M-R. Jarvelin, S. Smalley

2 factor 2 class data: class labels

2 factor 2 class data: factor score labels

2 factor 2 class data: items 1-9

2 factor 2 class data: items 10-18

Getting back to the list of problems (again)

- mispecification of the number of classes K
- non-normality within class
- mispecification of the factor structure within class
- other violations of assumptions of the factor model
- too many alternative models to fit
- graphical representation may reduce some of the ambiguity
 - how 'categorical' does it look?
 - how much variability within cluster?
- compare class labels resulting from fitting different models

Conclusion

- when used with caution, FMM's are a useful tool to explore potential clustering
 - advantage over non-model based clustering methods
 - conventional latent class or factor analysis may lead to incorrect results
- impact of the disadvantages of FMM's (e.g., overextraction of classes) depends on context
 - theoretical question concerning underlying structure (categorical vs. continuous)
 - single out 'affected' subjects for differential treatment

